Abstract

The water quality index (WQI) has been used to identify threats to water quality and to support better water resource management. This study combines a machine learning algorithm, WQI, and remote sensing spectral indices (difference index, DI; ratio index, RI; and normalized difference index, NDI) through fractional derivatives methods and in turn establishes a model for estimating and assessing the WQI. The results show that the calculated WQI values range between 56.61 and 2,886.51. We also explore the relationship between reflectance data and the WQI. The number of bands with correlation coefficients passing a significance test at 0.01 first increases and then decreases with a peak appearing after 1.6 orders. WQI and DI as well as RI and NDI correlation coefficients between optimal band combinations of the peak also appear after 1.6 orders with R2 values of 0.92, 0.58 and 0.92. Finally, 22 WQI estimation models were established by POS-SVR to compare the predictive effects of these models. The models based on a spectral index of 1.6 were found to perform much better than the others, with an R2 of 0.92, an RMSE of 58.4, and an RPD of 2.81 and a slope of curve fitting of 0.97.

Details

Title
Evaluation of water quality based on a machine learning algorithm and water quality index for the Ebinur Lake Watershed, China
Author
Wang, Xiaoping 1 ; Zhang, Fei 2 ; Ding, Jianli 2 

 College of Resources and Environment Science, Xinjiang University, Urumqi, Xinjiang, China; Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi, Xinjiang, China 
 College of Resources and Environment Science, Xinjiang University, Urumqi, Xinjiang, China; Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi, Xinjiang, China; Key Laboratory of Xinjiang wisdom city and environment modeling Urumqi, Urumqi, Xinjiang, China 
Pages
1-18
Publication year
2017
Publication date
Oct 2017
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1957852578
Copyright
© 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.