Full Text

Turn on search term navigation

© 2019. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Floating turbines are attracting increasing interest today. However, the power generation efficiency of a floating turbine is highly dependent on its motion stability in sea water. This issue is more marked, particularly when the floating turbines operate in relatively shallow water. In order to address this issue, a new concept motion stabilizer is studied in this paper. It is a completely passive device consisting of a number of heave plates. The plates are connected to the foundation of the floating wind turbine via structural arms. Since the heave plates are completely, rather than partially, exposed to water, all surfaces of them can be fully utilized to create the damping forces required to stabilize the floating wind turbine. Moreover, their stabilizing effect can be further amplified due to the application of the structural arms. This is because torques will be generated by the damping forces via the structural arms, and then applied to stabilizing the floating turbine. To verify the proposed concept motion stabilizer, its practical effectiveness on motion reduction is investigated in this paper. Both numerical and experimental testing results have shown that after using the proposed concept stabilizer, the motion stability of the floating turbine has been successfully improved over a wide range of wave periods even in relatively shallow water. Moreover, the comparison has shown that the stabilizer is more effective in stabilizing the floating wind turbine than single heave plate does. This suggests that the proposed concept stabilizer may provide a potentially viable solution for stabilizing floating wind turbines.

Details

Title
Experimental Research for Stabilizing Offshore Floating Wind Turbines
Author
Yang, Wenxian  VIAFID ORCID Logo  ; Tian, Wenye; Hvalbye, Ole; Peng, Zhike; Kexiang Wei  VIAFID ORCID Logo  ; Tian, Xinliang
First page
1947
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2403259202
Copyright
© 2019. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.