Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper reports the results of measurements of cutting forces and delamination in drilling of Glass-Fiber-Reinforced Polymer (GFRP) composites. Four different types of GFRP composites were tested, made by a different manufacturing method and had a different fiber type, weight fraction (wf) ratio, number of layers, but the same stacking sequence. GFRP samples were made using two technologies: a novel method based on the use of a specially designed pressing device and hand lay-up and vacuum bag technology process. The study was conducted with variable technological parameters: cutting speed vc and feed per tooth fz. The two-edge carbide diamond-coated drill produced by Seco Company was used in the experiments. Cutting-force components and delamination factor were measured in the experiments, and photos of the holes were taken to determine the delamination. In addition, modeling of cause-and-effect relationships between the technological drilling parameters vc and fz was simulated with the use of artificial neural network modeling. For all tested GFRP materials, an increase in fz led to an increase in the amplitude of cutting-force component Fz. The lowest values of the amplitude of cutting-force component Fz were obtained with the lowest tested feed per tooth value of 0.04 mm/tooth for all tested materials. It was observed that materials produced with the use of the specially designed pressing device were characterized by lower values of the cutting-force component Fz. It was also found that the delamination factor increased with an increase in fz for all tested GFRP materials. A comparison of the lowest and the highest values of fz revealed that the lowest delamination factor increase was archived by the B1 material and amounted to about 12.5%. The error margin of the obtained numerical modeling results does not exceed 15%, so it can be concluded that artificial neural networks are a suitable tool for modeling cutting force amplitudes as a function of vc and fz. The study has shown that the use of the special pressing device during the manufacturing of composite materials has a positive effect on delamination.

Details

Title
Experimental Study and Artificial Neural Network Simulation of Cutting Forces and Delamination Analysis in GFRP Drilling
Author
Biruk-Urban, Katarzyna 1   VIAFID ORCID Logo  ; Bere, Paul 2   VIAFID ORCID Logo  ; Józwik, Jerzy 1   VIAFID ORCID Logo  ; Leleń, Michał 1   VIAFID ORCID Logo 

 Department of Production Engineering, Mechanical Engineering Faculty, Lublin University of Technology, 20-618 Lublin, Poland 
 Department of Manufacturing Engineering, Faculty of Industrial Engineering, Robotics and Production Management, Technical University of Cluj-Napoca, Memorandumului 28, 400114 Cluj-Napoca, Romania 
First page
8597
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2748556300
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.