Full Text

Turn on search term navigation

Copyright © 2015 Wei Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Gas engine driven heat pumps (GEHPs) represent one of practical solutions to effectively utilize fossil fuel energy and reduce environmental pollution. In this paper, the performance characteristics of the GEHP were investigated experimentally with engine heat recovery. A GEHP test facility was set up for this purpose. The effects of several important factors including engine speed, ambient temperature, condenser water flow rate, and condenser water inlet temperature on the system performance were studied over a wide range of operating conditions. The results showed that the engine waste heat accounted for about 40-50% of the total heat capacity over the studied operating conditions. It also showed that engine speed and ambient temperature had significant effects on the GEHP performance. The coefficient of performance (COP) and the primary energy ratio (PER) decreased by 14% and 12%, respectively, as engine speed increased from 1400 rpm to 2000 rpm. On the other hand, the COP and PER of the system increased by 22% and 16%, respectively, with the ambient temperature increasing from 3 to 12°C. Furthermore, it was demonstrated that the condenser water flow rate and condenser water inlet temperature had little influence on the COP of the heat pump and the PER of the GEHP system.

Details

Title
Experimental Study of the Gas Engine Driven Heat Pump with Engine Heat Recovery
Author
Zhang, Wei; Wang, Tao; Zheng, Sulu; Peng, Xueyuan; Wang, Xiaolin
Publication year
2015
Publication date
2015
Publisher
John Wiley & Sons, Inc.
ISSN
1024123X
e-ISSN
15635147
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1706166000
Copyright
Copyright © 2015 Wei Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.