It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This paper presents the results of an experimental study on the combustion process of methane mixed with NH3 in flameless mode. At a time of striving for CO2-free power, NH3 became a potential energy storage carrier fuel from renewable sources. Flameless combustion features low emissions and is a very efficient technology used in the power sector, as well as steel production, ceramics, etc. Industrial furnaces were tested in the context of pure methane combustion with an addition of NH3, up to 5%. Flameless combustion conditions were achieved with a regenerative gas burner system (high regenerative system). The burner consists of four ceramic regenerators allowing for continuous preheating of air, even up to 50 K lower than the temperature of the combustion chamber wall. Constant power of the introduced fuel was kept at 150 kW and the fuel-air equivalence ratio ranged from 0.75 to 0.95. The results have shown a growth of molar fraction of NO in flue gases when NH3 content in the fuel rose. The increase is more significant for the tests with a higher amount of oxygen in the combustion chamber (a lower fuel-air equivalence ratio). An addition of 5% of NH3 into the fuel caused an emission of NO at the levels of 113 ppmv and 462 ppmv (calculated to O2 = 0%), respectively for low and high fuel-air equivalence ratios.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer