Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The paper presents issues associated with the experimental study of the vibration of a spot welding gun mounted on a robotic arm. The main aim of the study was to assess the vibration of the robot flange and the vibration of the mounted tool. Because of the tools’ large size and weight (up to 150 kg), manipulating it in a limited space is a challenge for programmers when defining trajectories. The article presents the results of inertial measurements of the KUKA KR120 R2500 industrial robot equipped with a pneumatic welding tool, paying particular attention to the vibrations occurring at the process points. Inertial tests on the robotic station were made using triaxial accelerometers and a high-speed camera. The methodology developed by the authors confirmed the existence of structural vibrations and allowed for defining the relationship between the robot’s motion parameters (notably velocity and acceleration) and the size of the vibrations present. The paper presents selected test results for various parameters of robot motion (speeds from 2000 mm/s to 500 mm/s and acceleration ramps ranging from 100% to 25%). In the course of the study, a disturbance was noticed in the form of a reduction in the value of maximum acceleration. This could be attributed to the appearance of the structure’s natural vibrations. Their character is not constant, and they are damped.

Details

Title
Experimental Study of the Vibration of the Spot Welding Gun at a Robotic Station
Author
Borys, Szymon 1   VIAFID ORCID Logo  ; Kaczmarek, Wojciech 1   VIAFID ORCID Logo  ; Laskowski, Dariusz 2   VIAFID ORCID Logo  ; Polak, Rafał 2   VIAFID ORCID Logo 

 Faculty of Mechatronics, Armament and Aerospace, Military University of Technology, Kaliskiego 2 Street, 00-908 Warsaw, Poland 
 Faculty of Electronics, Military University of Technology, Kaliskiego 2 Street, 00-908 Warsaw, Poland 
First page
12209
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2748521473
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.