Full Text

Turn on search term navigation

© 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The relentless spread of photovoltaic production drives searches of smart approaches to mitigate unbalances in power demand and supply, instability on the grid and ensuring stable revenues to the producer. Because of the development of energy markets with multiple time sessions, there is a growing need of power forecasting for multiple time steps, from fifteen minutes up to days ahead. To address this issue, in this study both a short-term-horizon of three days and a very-short-term-horizon of three hours photovoltaic production forecasting methods are presented. The short-term is based on a multimodel approach and referred to several configurations of the Analog Ensemble method, using the weather forecast of four numerical weather prediction models. The very-short-term consists of an Auto-Regressive Integrated Moving Average Model with eXogenous input (ARIMAX) that uses the short-term power forecast and the irradiance from satellite elaborations as exogenous variables. The methods, applied for one year to four small-scale grid-connected plants in Italy, have obtained promising improvements with respect to refence methods. The time horizon after which the short-term was able to outperform the very-short-term has also been analyzed. The study also revealed the usefulness of satellite data on cloudiness to properly interpret the results of the performance analysis.

Details

Title
Exploitation of a New Short-Term Multimodel Photovoltaic Power Forecasting Method in the Very Short-Term Horizon to Derive a Multi-Time Scale Forecasting System
First page
789
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2486893649
Copyright
© 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.