Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Salvia miltiorrhiza is a medicinal plant that synthesises biologically-active tanshinones with numerous therapeutic properties. An important rate-limiting enzyme in the biosynthesis of their precursors is 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR). This study presents the organ-specific expression profile of the S. miltiorrhiza HMGR4 gene and its sensitivity to potential regulators, viz. gibberellic acid (GA3), indole-3-acetic acid (IAA) and salicylic acid (SA). In addition, it demonstrates the importance of the HMGR4 gene, the hormone used, the plant organ, and the culture environment for the biosynthesis of tanshinones. HMGR4 overexpression was found to significantly boost the accumulation of dihydrotanshinone I (DHTI), cryptotanshinone (CT), tanshinone I (TI) and tanshinone IIA (TIIA) in roots by 0.44 to 5.39 mg/g dry weight (DW), as well as TIIA in stems and leaves. S. miltiorrhiza roots cultivated in soil demonstrated higher concentrations of the examined metabolites than those grown in vitro. GA3 caused a considerable increase in the quantity of CT (by 794.2 µg/g DW) and TIIA (by 88.1 µg/g DW) in roots. In turn, IAA significantly inhibited the biosynthesis of the studied tanshinones in root material.

Details

Title
The Expression Profiles of the Salvia miltiorrhiza 3-Hydroxy-3-methylglutaryl-coenzyme A Reductase 4 Gene and Its Influence on the Biosynthesis of Tanshinones
Author
Majewska, Małgorzata 1   VIAFID ORCID Logo  ; Szymczyk, Piotr 1   VIAFID ORCID Logo  ; Gomulski, Jan 1 ; Jeleń, Agnieszka 2   VIAFID ORCID Logo  ; Grąbkowska, Renata 1 ; Balcerczak, Ewa 2   VIAFID ORCID Logo  ; Kuźma, Łukasz 1   VIAFID ORCID Logo 

 Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland; [email protected] (P.S.); [email protected] (J.G.); [email protected] (R.G.) 
 Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland; [email protected] (A.J.); [email protected] (E.B.) 
First page
4354
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2694046033
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.