Full Text

Turn on search term navigation

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Alkaloids, typical nitrogen compounds, were found to be abundant in tobacco waste. The recovery of alkaloids from tobacco waste for biological pesticides could reduce the use of traditional chemical pesticides and avoid the pollution of farmland by the leaching of alkaloids from tobacco waste. Considering the fact that alkaloids can easily volatilize, thermal treatment is expected to be a potential technology to achieve the release and recovery of alkaloids from tobacco waste. For better understanding of conversion behavior of nitrogen-containing compounds in tobacco waste during thermal treatment, purge/trap-GC/MS (gas chromatography mass spectrometry), PY-GC/MS (pyrolysis-gas chromatography mass spectrometry), and fixed-bed/ATD-GC/MS (auto-thermal desorption gas chromatography mass spectrometry) were adopted to detect the ingredients and concentration of nitrogen-containing compounds in tobacco waste and/or volatiles. The results of purge/trap-GC/MS showed that nitrogen-containing compounds in tobacco waste could be effectively evaporated at 180 °C in the forms of N-benzyl-N-ethyl-P-isopropyl benzamide, 2-Amino-4-methylphenol, or N-butyl-tert-butylamine. Specifically, N-benzyl-N-ethyl-P-isopropyl benzamide was the main nitrogenous compound in the volatiles of tobacco wastes accordingly. (S)-3-(1-Methyl-2-pyrrolidinyl) pyridine was dominant in N-compounds in pyrolysis condition according to the results of Py-GC/MS. In air atmosphere, with the heating temperature increasing, the concentration of main (S)-3-(1-Methyl-2-pyrrolidinyl) pyridine was firstly increased and then decreased. Besides, the interactions between the released volatiles could be accelerated at a high temperature. Accordingly, these findings suggested that pyrolysis under proper conditions could effectively promote the extraction of alkaloids from tobacco waste.

Details

Title
Extraction of Nitrogen Compounds from Tobacco Waste via Thermal Treatment
Author
Wei, Min 1 ; Fu, Yang 2 ; Song, Xuyan 1 ; Li, Ran 1 ; Pan, Xi 1 ; Gao, Qiang 2 ; He, Yunlu 1 ; Ye, Mingqiao 1 ; Hu, Hongyun 2 

 Technology Center of China Tobacco Hubei Industry limited-liability Company, Wuhan 430040, China; [email protected] (M.W.); [email protected] (X.S.); [email protected] (R.L.); [email protected] (X.P.); [email protected] (Y.H.) 
 State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; [email protected] (F.Y.); [email protected] (Q.G.); [email protected] (H.H.) 
First page
4619
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2441141030
Copyright
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.