Full Text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Intelligent responsive materials have become one of the most exciting fields in the research of new materials in the past few decades due to their practical and potential applications in aerospace, biomedicine, textile, electronics, and other relative fields. Here, a novel thermal-responsive biomimetic shape memory wood composite is fabricated utilizing polycaprolactone-based (PCL) shape-memory polymer to modify treated-wood. The shape memory wood inherits visual characteristics and the unique three-dimension structure of natural wood that endows the shape memory wood (SMW) with outstanding tensile strength (10.68 MPa) at room temperature. In terms of shape memory performance, the shape recovery ratio is affected by multiple factors including environment temperature, first figuration angle, cycle times, and shows different variation tendency, respectively. Compared with shape recovery ratio, the shape fixity ratio (96%) is relatively high and stable. This study supplies more possibilities for the functional applications of wood, such as biomimetic architecture, self-healing wood veneering, and intelligent furniture.

Details

Title
Fabrication and Characterization of Thermal-Responsive Biomimetic Small-Scale Shape Memory Wood Composites with High Tensile Strength, High Anisotropy
Author
Wang, Luhao  VIAFID ORCID Logo  ; Wu, Danni; Liu, Yi; Li, Li; Liu, Hongguang
First page
1892
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
20734360
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2550248536
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.