Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In recent years, the electrochemical sensing approach has attracted electrochemists because of its excellent detection process, simplicity, high sensitivity, cost-effectiveness, and high selectivity. In this study, we prepared nitrogen doped reduced graphene oxide (N-rGO) and characterized it using various advanced techniques such as XRD, SEM, EDX, Raman, and XPS. Furthermore, we modified the active surface of a screen printed carbon electrode (SPCE) via the drop-casting of N-rGO. This modified electrode (N-rGO/SPCE) exhibited an excellent detection limit (LOD) of 0.83 µM with a decent sensitivity of 4.34 µAµM−1cm−2 for the detection of hydrogen peroxide (H2O2). In addition, N-rGO/SPCE also showed excellent selectivity, repeatability, and stability for the sensing of H2O2. Real sample investigations were also carried out that showed decent recovery.

Details

Title
Fabrication of Nitrogen-Doped Reduced Graphene Oxide Modified Screen Printed Carbon Electrode (N-rGO/SPCE) as Hydrogen Peroxide Sensor
Author
Ahmad, Khursheed  VIAFID ORCID Logo  ; Kim, Haekyoung
First page
2443
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20794991
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2694043623
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.