Full Text

Turn on search term navigation

Copyright © 2020 Thi Thu Hoang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/

Abstract

Carbon-based nanomaterials have successively remained at the forefront of different research fields and applications for years. Understanding of low-dimension carbon material family (CNT, fullerenes, graphene, and graphene quantum dots) has arrived at a certain extension. In this report, graphene quantum dots were synthesized from graphene oxide with a microwave-assisted hydrothermal method. Compared with conventional time-consuming hydrothermal routes, this novel method requires a much shorter time, around ten minutes. Successful formation of quantum dots derived from graphene sheets was verified with microscopic and spectroscopic characterization. Nanoparticles present a diameter of about 2-8 nm, blue emission under ultraviolet excitation, and good dispersion in polar solvents and can be collected in powder form. The synthesized graphene quantum dots were utilized as a hole transport layer in organic solar cells to enhance the cell quantum efficiency. Such quantum dots possess energy levels (Ec and Ev) relevant to HOMO and LUMO levels of conductive polymers. Mixing P3HT:PCBM polymer and graphene quantum dots of sufficient extent notably helps reduce potential difference at interfaces of the two materials. Overall efficiency consequently advances to 1.43%, an increase of more than 44% compared with pristine cells (0.99%).

Details

Title
A Facile Microwave-Assisted Hydrothermal Synthesis of Graphene Quantum Dots for Organic Solar Cell Efficiency Improvement
Author
Hoang, Thi Thu 1   VIAFID ORCID Logo  ; Pham, Hoai Phuong 2   VIAFID ORCID Logo  ; Tran, Quang Trung 1   VIAFID ORCID Logo 

 Faculty of Physics, University of Science, Vietnam National University Ho Chi Minh City (VNU-HCM), 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City 72711, Vietnam 
 Faculty of Physics, University of Science, Vietnam National University Ho Chi Minh City (VNU-HCM), 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City 72711, Vietnam; Faculty of Science, Dong Nai University, 4 Le Quy Don Street, Tan Hiep Ward, Bien Hoa City 76111, Vietnam 
Editor
Anagh Bhaumik
Publication year
2020
Publication date
2020
Publisher
John Wiley & Sons, Inc.
ISSN
16874110
e-ISSN
16874129
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2361793292
Copyright
Copyright © 2020 Thi Thu Hoang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/