Full Text

Turn on search term navigation

© 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Oxygen vacancy defects play an important role in improving the light-capturing and photocatalytic activity of tungsten trioxide (WO3). However, the hydrogen treatment method that is commonly used to introduce oxygen vacancies is expensive and dangerous. Therefore, the introduction and control of oxygen vacancy defects in WO3 remains a challenge. Here, we demonstrated that oxygen vacancies could be successfully introduced into WO3−x while using a facile method through low temperature annealing in alcohol. The obtained WO3−x samples with optimal oxygen vacancies showed strong absorption of light, extending from the ultraviolet to the visible and near-infrared regions, and exhibits strong plasmon resonance from 400–1200 nm peaking at approximately 800 nm. When compared to pristine WO3, the photocatalytic activity of WO3−x was greatly improved in the ultraviolet and visible regions. This study provides a simple and efficient method to generate oxygen vacancies in WO3 for photocatalysis, which may be applied in the photoelectrochemical, electrochromic, and photochromic fields. Because oxygen vacancy is a common characteristic of metal oxides, the findings that are presented herein may be extended to other metal oxides.

Details

Title
Facile Strategy for Synthesizing Non-Stoichiometric Monoclinic Structured Tungsten Trioxide (WO3−x) with Plasma Resonance Absorption and Enhanced Photocatalytic Activity
Author
Chen, Shihao; Yang, Xiao; Xie, Wei; Wang, Yinhai; Hu, Zhengfa; Zhang, Wei; Zhao, Hui
Publication year
2018
Publication date
Jul 2018
Publisher
MDPI AG
e-ISSN
20794991
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2125080675
Copyright
© 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.