Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Vegetation net primary productivity (VNPP) is the main factor in ecosystem carbon sink function and regulation of environmental processes. However, NPP data products have data missing in some areas, which affects the availability and overall accuracy level of data. Therefore, we adopted the Factor Analysis Backpropagation neural network model (FA-BP model) to acquire a high-accuracy and high-reliability NPP result without missing or empty areas by using a series of easily accessible datasets, such as meteorological data and remote sensing data. We selected the western Sichuan region as the study area and carried out a VNPP time series estimation from 2000 to 2016. Comparative simulations also verify the accuracy of the time series estimation results: The Pearson correlation r of VNPP prediction results ranged from 0.807 to 0.917, the mean absolute error ranged from 29.1 to 38.9, the root mean square error was between 37.3 and 51.8, and the mean relative error varies from 0.10 to 0.14. Further analysis shows that the spatial pattern of estimated VNPP during the past 17 years in western Sichuan shows a decreasing trend from southeast to northwest. Besides, the VNPP time series is generally on an upward trend in this period. The increasing and decreasing areas of VNPP values in the study area accounted for 81.42% and 18.58%, respectively. Moreover, we find that temperature dominates the change of VNPP in the whole western Sichuan region. The data processing method and experimental results presented in this paper can provide a reference for accurately acquiring VNPP and related studies on natural resources and climate change.

Details

Title
A Factor Analysis Backpropagation Neural Network Model for Vegetation Net Primary Productivity Time Series Estimation in Western Sichuan
Author
Li, Song 1 ; Zhang, Rui 2   VIAFID ORCID Logo  ; Xie, Lingxiao 1   VIAFID ORCID Logo  ; Zhan, Junyu 1 ; Song, Yunfan 3 ; Zhan, Runqing 1 ; Shama, Age 1 ; Wang, Ting 1 

 Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 610031, China 
 Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 610031, China; State-Province Joint Engineering Laboratory of Spatial Information Technology of High-Speed Rail Safety, Southwest Jiaotong University, Chengdu 610031, China 
 Institute of Plateau Meteorology, China Meteorological Administration, Chengdu 610072, China 
First page
3961
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2706291906
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.