Full text

Turn on search term navigation

Copyright © 2018 Dan Zhuang and Youbo Liu. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/

Abstract

A Fast Screen and Shape Recognition (FSSR) algorithm is proposed with complexity down to O(n) for the multiple change-point detection problems. The proposed FSSR algorithm includes two steps. First, by dividing the data into several subsegments, FSSR algorithm can quickly lock some small subsegments that are likely to contain change-points. Second, through a point by point search in each selected subsegment, FSSR algorithm determines the precise location of the change-point. The simulation study shows that FSSR has obvious speed and stability advantages. Particularly, the sparser the change-points is, the better result will be achieved from FRRS. Finally, we apply FSSR to two real applications to demonstrate its feasibility and robustness. One is the problem of DNA copy number variations identifying; another is the problem of operation scenarios reduction for renewable integrated electrical distribution network.

Details

Title
A Fast Screen and Shape Recognition Algorithm for Multiple Change-Point Detection
Author
Zhuang, Dan 1   VIAFID ORCID Logo  ; Liu, Youbo 2   VIAFID ORCID Logo 

 School of Statistics, Southwestern University of Finance and Economics, China 
 School of Electrical Engineering and Information, Sichuan University, China 
Editor
Erik Cuevas
Publication year
2018
Publication date
2018
Publisher
John Wiley & Sons, Inc.
ISSN
1024123X
e-ISSN
15635147
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2123605419
Copyright
Copyright © 2018 Dan Zhuang and Youbo Liu. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/