Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Efficient processing of ultra-high-resolution images is increasingly sought after with the continuous advancement of photography and sensor technology. However, the semantic segmentation of remote sensing images lacks a satisfactory solution to optimize GPU memory utilization and the feature extraction speed. To tackle this challenge, Chen et al. introduced GLNet, a network designed to strike a better balance between GPU memory usage and segmentation accuracy when processing high-resolution images. Building upon GLNet and PFNet, our proposed method, Fast-GLNet, further enhances the feature fusion and segmentation processes. It incorporates the double feature pyramid aggregation (DFPA) module and IFS module for local and global branches, respectively, resulting in superior feature maps and optimized segmentation speed. Extensive experimentation demonstrates that Fast-GLNet achieves faster semantic segmentation while maintaining segmentation quality. Additionally, it effectively optimizes GPU memory utilization. For example, compared to GLNet, Fast-GLNet’s mIoU on the Deepglobe dataset increased from 71.6% to 72.1%, and GPU memory usage decreased from 1865 MB to 1639 MB. Notably, Fast-GLNet surpasses existing general-purpose methods, offering a superior trade-off between speed and accuracy in semantic segmentation.

Details

Title
Fast Semantic Segmentation of Remote Sensing Images Using a Network That Integrates Global and Local Information
Author
Wu, Boyang; Cui, Jianyong; Cui, Wenkai; Yuan, Yirong  VIAFID ORCID Logo  ; Ren, Xiancong
First page
5310
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2824047506
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.