Full Text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Images provided by the ESA Sentinel-2 mission are rapidly becoming the main source of information for the entire remote sensing community, thanks to their unprecedented combination of spatial, spectral and temporal resolution, as well as their associated open access policy. Due to a sensor design trade-off, images are acquired (and delivered) at different spatial resolutions (10, 20 and 60 m) according to specific sets of wavelengths, with only the four visible and near infrared bands provided at the highest resolution (10 m). Although this is not a limiting factor in general, many applications seem to emerge in which the resolution enhancement of 20 m bands may be beneficial, motivating the development of specific super-resolution methods. In this work, we propose to leverage Convolutional Neural Networks (CNNs) to provide a fast, upscalable method for the single-sensor fusion of Sentinel-2 (S2) data, whose aim is to provide a 10 m super-resolution of the original 20 m bands. Experimental results demonstrate that the proposed solution can achieve better performance with respect to most of the state-of-the-art methods, including other deep learning based ones with a considerable saving of computational burden.

Details

Title
Fast Super-Resolution of 20 m Sentinel-2 Bands Using Convolutional Neural Networks
Author
Gargiulo, Massimiliano 1 ; Mazza, Antonio 1 ; Gaetano, Raffaele 2   VIAFID ORCID Logo  ; Ruello, Giuseppe 1 ; Scarpa, Giuseppe 1   VIAFID ORCID Logo 

 Department of Electrical Engineering and Information Technology (DIETI), University Federico II, 80125 Naples, Italy; [email protected] (M.G.); [email protected] (A.M.); [email protected] (G.R.) 
 Centre International de Recherche Agronomique pour le Développement (CIRAD), Unité Mixte de Recherche Territoires, Environnement, Télédétéction et Information Spatiale (UMR TETIS), Maison de la Télédétéction, 34000 Montpellier, France; [email protected]; UMR TETIS, University of Montpellier, 34000 Montpellier, France 
First page
2635
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2550277429
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.