Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this paper, a machine learning-based approach for the automation of topology selection of integrated analog amplifier circuits is presented. A dataset of 480,000 circuits for 30 different amplifier topologies is generated for the prediction algorithm based on a precomputed lookup tables (LUTs) approach. A first approach based on neural networks is presented where the required specifications act as inputs to the networks, and the output of the network is the suitable topology for such a set of specifications. A modified cascaded neural network approach is examined to reduce the training time of the network while maintaining the prediction accuracy. Using the cascaded neural network approach, the network is trained in only one minute on a standard computer, and a 90.8% prediction accuracy is achieved. This allows on-the-fly changes in the input specifications, and consequently the neural network, to enable examining different design scenarios.

Details

Title
Fast Topology Selection for Analog Amplifier Circuits Using On-The-Fly Cascaded Neural Networks
Author
Khalil, Karim; Yasseen, Khaled  VIAFID ORCID Logo  ; Omran, Hesham  VIAFID ORCID Logo 
First page
2654
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2711287728
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.