Full Text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Detecting the faults related to the operating condition of induction motors is a very important task for avoiding system failure. In this paper, a novel methodology is demonstrated to detect the working condition of a three-phase induction motor and classify it as a faulty or healthy motor. The electrical current signal data is collected for five different types of fault and one normal operating condition of the induction motors. The first part of the methodology illustrates a pattern recognition technique based on the empirical wavelet transform, to transform the raw current signal into two dimensional (2-D) grayscale images comprising the information related to the faults. Second, a deep CNN (Convolutional Neural Network) model is proposed to automatically extract robust features from the grayscale images to diagnose the faults in the induction motors. The experimental results show that the proposed methodology achieves a competitive accuracy in the fault diagnosis of the induction motors and that it outperformed the traditional statistical and other deep learning methods.

Details

Title
Fault Diagnosis System for Induction Motors by CNN Using Empirical Wavelet Transform
Author
Yu-Min, Hsueh; Veeresh Ramesh Ittangihal; Wei-Bin, Wu; Hong-Chan, Chang
First page
1212
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
20738994
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2550274076
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.