Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Predictive Maintenance 4.0 (PdM 4.0) showed a highly positive impact on chilled water system (CWS) maintenance. This research followed the recommendations of a systematic literature review (SLR), which was performed on PdM 4.0 applications for CWS at commercial buildings. Per the SLR, and to start making an excellent PdM 4.0 program, the faults and their frequencies must be identified. Therefore, this research constructed an industry survey, which went through a pilot study, and then shared it with 761 maintenance officers in different commercial buildings. The first goal of this survey is to verify the faults reported by SLR, explore more faults, and suggest a managerial solution for each fault. The second goal is to determine the minimum and maximum frequencies of faults occurrence, while the third goal is to verify selected operational parameters, in which their data can be used in smart buildings applications. A total of 304 responses are considered in this study, which identified additional faults and provided faults solutions for all CWS components. Based on the survey outcomes, justifiable frequencies are proposed, which can be used in creating the dataset of any machine learning model, and then to control the CWS performance.

Details

Title
Fault Types and Frequencies in Predictive Maintenance 4.0 for Chilled Water System at Commercial Buildings: An Industry Survey
Author
Malek Almobarek 1   VIAFID ORCID Logo  ; Mendibil, Kepa 1 ; Alrashdan, Abdalla 2 ; Mejjaouli, Sobhi 2   VIAFID ORCID Logo 

 Department of Design, Manufacturing, and Engineering Management, Faculty of Engineering, University of Strathclyde, Glasgow G1 1XQ, UK 
 Industrial Engineering Department, College of Engineering, Alfaisal University, Riyadh 50927, Saudi Arabia 
First page
1995
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20755309
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2748270656
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.