Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In remote sensing images, change detection (CD) is required in many applications, such as: resource management, urban expansion research, land management, and disaster assessment. Various deep learning-based methods were applied to satellite image analysis for change detection, yet many of them have limitations, including the overfitting problem. This research proposes the Feature Weighted Attention (FWA) in Bidirectional Long Short-Term Memory (BiLSTM) method to reduce the overfitting problem and increase the performance of classification in change detection applications. Additionally, data usage and accuracy in remote sensing activities, particularly CD, can be significantly improved by a large number of training models based on BiLSTM. Normalization techniques are applied to input images in order to enhance the quality and reduce the difference in pixel value. The AlexNet and VGG16 models were used to extract useful features from the normalized images. The extracted features were then applied to the FWA-BiLSTM model, to give more weight to the unique features and increase the efficiency of classification. The attention layer selects the unique features that help to distinguish the changes in the remote sensing images. From the experimental results, it was clearly shown that the proposed FWA-BiLSTM model achieved better performance in terms of precision (93.43%), recall (93.16%), and overall accuracy (99.26%), when compared with the existing Difference-enhancement Dense-attention Convolutional Neural Network (DDCNN) model.

Details

Title
Feature Weighted Attention—Bidirectional Long Short Term Memory Model for Change Detection in Remote Sensing Images
Author
Patra, Raj Kumar 1 ; Patil, Sujata N 2 ; Falkowski-Gilski, Przemysław 3   VIAFID ORCID Logo  ; Łubniewski, Zbigniew 3 ; Poongodan, Rachana 4 

 Department of Computer Science and Engineering, CMR Technical Campus, Hyderabad 501401, India 
 Department of Electronics and Communication Engineering, KLE Dr. M S Sheshgiri College of Engineering and Technology, Karnataka 590008, India 
 Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland 
 Department of Computer Science and Engineering, New Horizon College of Engineering, Bangalore 560103, India 
First page
5402
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2771655488
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.