Full Text

Turn on search term navigation

© 2019. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A piping and instrumentation diagram (P&ID) is a key drawing widely used in the energy industry. In a digital P&ID, all included objects are classified and made amenable to computerized data management. However, despite being widespread, a large number of P&IDs in the image format still in use throughout the process (plant design, procurement, construction, and commissioning) are hampered by difficulties associated with contractual relationships and software systems. In this study, we propose a method that uses deep learning techniques to recognize and extract important information from the objects in the image-format P&IDs. We define the training data structure required for developing a deep learning model for the P&ID recognition. The proposed method consists of preprocessing and recognition stages. In the preprocessing stage, diagram alignment, outer border removal, and title box removal are performed. In the recognition stage, symbols, characters, lines, and tables are detected. The objects for recognition are symbols, characters, lines, and tables in P&ID drawings. A new deep learning model for symbol detection is defined using AlexNet. We also employ the connectionist text proposal network (CTPN) for character detection, and traditional image processing techniques for P&ID line and table detection. In the experiments where two test P&IDs were recognized according to the proposed method, recognition accuracies for symbol, characters, and lines were found to be 91.6%, 83.1%, and 90.6% on average, respectively.

Details

Title
Features Recognition from Piping and Instrumentation Diagrams in Image Format Using a Deep Learning Network
Author
Yu, Eun-Seop; Jae-Min Cha; Lee, Taekyong; Kim, Jinil; Duhwan Mun  VIAFID ORCID Logo 
First page
4425
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2346446079
Copyright
© 2019. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.