Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The social Internet of Medical Things (S-IoMT) highly demands dependable and non-invasive device identification and authentication and makes data services more prevalent in a reliable learning system. In real time, healthcare systems consistently acquire, analyze, and transform a few operational intelligence into actionable forms through digitization to capture the sensitive information of the patient. Since the S-IoMT tries to distribute health-related services using IoT devices and wireless technologies, protecting the privacy of data and security of the device is so crucial in any eHealth system. To fulfill the design objectives of eHealth, smart sensing technologies use built-in features of social networking services. Despite being more convenient in its potential use, a significant concern is a security preventing potential threats and infringement. Thus, this paper presents a lightweight two-factor authentication framework (L2FAK) with privacy-preserving functionality, which uses a mobile sink for smart eHealth. Formal and informal analyses prove that the proposed L2FAK can resist cyberattacks such as session stealing, message modification, and denial of service, guaranteeing device protection and data integrity. The learning analysis verifies the features of the physical layer using federated learning layered authentication (FLLA) to learn the data characteristics by exploring the learning framework of neural networks. In the evaluation, the core scenario is implemented on the TensorFlow Federated framework to examine FLLA and other relevant mechanisms on two correlated datasets, namely, MNIST and FashionMNIST. The analytical results show that the proposed FLLA can analyze the protection of privacy features effectively in order to guarantee an accuracy 89.83% to 93.41% better than other mechanisms. Lastly, a real-time testbed demonstrates the significance of the proposed L2FAK in achieving better quality metrics, such as transmission efficiency and overhead ratio than other state-of-the-art approaches.

Details

Title
Federated Learning-Based Lightweight Two-Factor Authentication Framework with Privacy Preservation for Mobile Sink in the Social IoMT
Author
Deebak, B D  VIAFID ORCID Logo  ; Hwang, Seong Oun  VIAFID ORCID Logo 
First page
1250
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2785188381
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.