Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In tasks of transmission line defect detection, traditional object detection algorithms are ineffective, with few training samples of defective components. Meta-learning uses multi-task learning as well as fine-tuning to learn common features in different tasks, which has the ability to adapt to new tasks quickly, shows good performance in few-shot object detection, and has good generalization in new tasks. For this reason, we proposed a few-shot defect detection method (Meta PowerNet) with a Meta-attention RPN and Feature Reconstruction Module for transmission lines based on meta-learning. First, in the stage of region proposal, a new region proposal network (Meta-Attention Region Proposal Network, MA-RPN) is designed to fuse the support set features and the query set features to filter the noise in anchor boxes. In addition, it has the ability to focus on the subtle texture features of smaller-sized objects by fusing low-level features from the query set. Second, in the meta-feature construction stage, we designed a meta-learner with the defect feature reconstruction module as the core to capture and focus on the defect-related feature channels. The experimental results show that under the condition, there are only 30 training objects for various types of component defects. The method achieves 72.5% detection accuracy for component defects, which is a significant improvement compared with other mainstream few-shot object detection. Meanwhile, the MA-RPN designed in this paper can be used in other meta-learning object detection models universally.

Details

Title
A Few-Shot Defect Detection Method for Transmission Lines Based on Meta-Attention and Feature Reconstruction
Author
Shi, Yundong 1 ; Wang, Huimin 2 ; Chao, Jing 3 ; Zhang, Xingzhong 4 

 College of Software, Taiyuan University of Technology, Taiyuan 030024, China 
 Shanxi Energy Internet Research Institute, Taiyuan 030024, China 
 Shanxi Energy Internet Research Institute, Taiyuan 030024, China; College of Software, Shanxi Agricultural University, Jinzhong 030801, China 
 College of Software, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi Energy Internet Research Institute, Taiyuan 030024, China 
First page
5896
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2819278674
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.