Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Currently, intelligent devices with fingerprint identification are widely deployed in our daily life. However, they are vulnerable to attack by fake fingerprints made of special materials. To elevate the security of these intelligent devices, many fingerprint liveness detection (FLD) algorithms have been explored. In this paper, we propose a novel detection structure to discriminate genuine or fake fingerprints. First, to describe the subtle differences between them and take advantage of texture descriptors, three types of different fine-grained texture feature extraction algorithms are used. Next, we develop a feature fusion rule, including five operations, to better integrate the above features. Finally, those fused features are fed into a support vector machine (SVM) classifier for subsequent classification. Data analysis on three standard fingerprint datasets indicates that the performance of our method outperforms other FLD methods proposed in recent literature. Moreover, data analysis results of blind materials are also reported.

Details

Title
Fingerprint Liveness Detection Based on Fine-Grained Feature Fusion for Intelligent Devices
Author
Li, Xinting; Cheng, Weijin; Yuan, Chengsheng; Gu, Wei; Yang, Baochen; Cui, Qi
First page
517
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2387121308
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.