Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The finite element technique has been accepted as a tool for modeling geotechnical complex processes. In this study, finite element (FE) modeling of various stages of the soil-nailing process, i.e., construction stages and overburden pressure stages, is carried out considering different soil parameters, simulating with in-house developed laboratory models. The soil-nailing process built in laboratory models is idealized as a plain strain problem and modeled in PLAXIS software. The laboratory models of the soil-nailing process consist of a Perspex sheet box containing a sandy soil slope, a Perspex sheet facing, steel bars as reinforcement and a steel plate as foundation. The stress–strain relationship of the sand is represented by a Hardening-Soil model. The interface at the soil and nail is described by the Coulomb friction model. The behavior of the soil-nailing process, during the construction stage and under varying overburden pressure and varying soil density, are investigated in terms of displacements of slope and stress conditions in slope soil mass. The slope displacements and stress conditions in slope soil mass are all well presented by the FE modeling and compared with laboratory model test data. The sensitivity analysis of the laboratory models’ dimensions is carried out by three-dimensional modeling of the nailed-soil slope. It can be concluded that the developed finite element model has the potential to simulate the performance of a field nailed-soil slope during construction and working stages and could provide guidance for the construction/maintenance of soil-nailed cut slopes in granular soils/weathered rocks.

Details

Title
Finite Element Modeling of the Soil-Nailing Process in Nailed-Soil Slopes
Author
Mohamed, Mahmoud H; Ahmed, Mohd  VIAFID ORCID Logo  ; Mallick, Javed  VIAFID ORCID Logo  ; AlQadhi, Saeed
First page
2139
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2779439545
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.