It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
A review of literature related to fire evacuation in high-rise buildings was carried out with the following objectives, (1) to identify the key behavioural factors affecting the performance of people during a fire in a high-rise building, the singularities associated to this type of buildings and areas of future research; (2) to review the procedures and strategies currently adopted in high-rise buildings; (3) to review and analyse the capabilities of evacuation models by reviewing their current characteristics and applications in the context of high-rise building evacuations. The review included both findings on human behaviour in high-rise buildings and modelling techniques and tools. Different categories of building use were taken into account, namely office buildings, residential buildings and health care facilities. The individual or combined use of different egress components was analysed. Egress components include the use of stairs, elevators as well as alternative means of escape (e.g., sky-bridges, helicopters, etc.). The effectiveness of the egress components is strongly affected by the building use and the population involved. The review shows that evacuation models can be effectively employed to study relocation strategies and safety issues associated with high-rise buildings. The suitability of egress models for high-rise building evacuations is associated with their flexibility in representing different egress components and complex behavioural processes. The review highlights that there is not a definitive model to be used but that the predictive capabilities of evacuation modelling techniques would be enhanced if more than one model is employed to study different egress aspects. Future research and model developments should focus on the study of the impact of staff actions, group dynamics and people with disabilities. Given the increasing height of buildings and the gradual reduction in the physical abilities of the population, the effects of fatigue on evacuation need further studies.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer