Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The Internet of Things (IoT) is a prominent and advanced network communication technology that has familiarized the world with smart industries. The conveniently acquirable nature of IoT makes it susceptible to a diversified range of potential security threats. The literature has brought forth a plethora of solutions for ensuring secure communications in IoT-based smart industries. However, resource-constrained sectors still demand significant attention. We have proposed a fog-assisted deep learning (DL)-empowered intrusion detection system (IDS) for resource-constrained smart industries. The proposed Cuda–deep neural network gated recurrent unit (Cu-DNNGRU) framework was trained on the N-BaIoT dataset and was evaluated on judicious performance metrics, including accuracy, precision, recall, and F1-score. Additionally, the Cu-DNNGRU was empirically investigated alongside state-of-the-art classifiers, including Cu-LSTMDNN, Cu-BLSTM, and Cu-GRU. An extensive performance comparison was also undertaken among the proposed IDS and some outstanding solutions from the literature. The simulation results showed ample strength with respect to the validation of the proposed framework. The proposed Cu-DNNGRU achieved 99.39% accuracy, 99.09% precision, 98.89% recall, and an F1-score of 99.21%. In the performance comparison, the values were substantially higher than those of the benchmarked schemes, as well as competitive security solutions from the literature.

Details

Title
Fog-Assisted Deep-Learning-Empowered Intrusion Detection System for RPL-Based Resource-Constrained Smart Industries
Author
Attique, Danish 1 ; Wang, Hao 2 ; Wang, Ping 2 

 College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China 
 Department of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China 
First page
9416
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2748559982
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.