Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Accurate lane detection is an essential function of dynamic traffic perception. Though deep learning (DL) based methods have been widely applied to lane detection tasks, such models rarely achieve sufficient accuracy in low-light weather conditions. To improve the model accuracy in foggy conditions, a new approach was proposed based on monocular depth prediction and an atmospheric scattering model to generate fog artificially. We applied our method to the existing CULane dataset collected in clear weather and generated 107,451 labeled foggy lane images under three different fog densities. The original and generated datasets were then used to train state-of-the-art (SOTA) lane detection networks. The experiments demonstrate that the synthetic dataset can significantly increase the lane detection accuracy of DL-based models in both artificially generated foggy lane images and real foggy scenes. Specifically, the lane detection model performance (F1-measure) was increased from 11.09 to 70.41 under the heaviest foggy conditions. Additionally, this data augmentation method was further applied to another dataset, VIL-100, to test the adaptability of this approach. Similarly, it was found that even when the camera position or level of brightness was changed from one dataset to another, the foggy data augmentation approach is still valid to improve model performance under foggy conditions without degrading accuracy on other weather conditions. Finally, this approach also sheds light on practical applications for other complex scenes such as nighttime and rainy days.

Details

Title
Foggy Lane Dataset Synthesized from Monocular Images for Lane Detection Algorithms
Author
Nie, Xiangyu 1 ; Xu, Zhejun 1 ; Zhang, Wei 1 ; Xue Dong 1 ; Liu, Ning 2 ; Chen, Yuanfeng 2 

 China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China; [email protected] (X.N.); [email protected] (Z.X.); [email protected] (W.Z.) 
 Midea Group, Shanghai 201702, China; [email protected] (N.L.); [email protected] (Y.C.) 
First page
5210
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2694076108
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.