Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

WO3 is a versatile material occurring in many polymorphs, and is used in nanostructured form in many applications, including photocatalysis, gas sensing, and energy storage. We investigated the thermal evolution of cubic-phase nanocrystals with a size range of 5–25 nm by means of in situ heating in the transmission electron microscope (TEM), and found distinct pathways for the formation of either 2D WO3 nanosheets or elemental W nanoparticles, depending on the initial concentration of deposited WO3 nanoparticles. These pristine particles were stable up to 600 °C, after which coalescence and fusion of the nanocrystals were observed. Typically, the nanocrystals transformed into faceted nanocrystals of elemental body-centered-cubic W after annealing to 900 °C. However, in areas where the concentration of dropcast WO3 nanoparticles was high, at a temperature of 900 °C, considerably larger lath-shaped nanosheets (extending for hundreds of nanometers in length and up to 100 nm in width) were formed that are concluded to be in monoclinic WO3 or WO2.7 phases. These lath-shaped 2D particles, which often curled up from their sides into folded 2D nanosheets, are most likely formed from the smaller nanoparticles through a solid–vapor–solid growth mechanism. The findings of the in situ experiments were confirmed by ex situ experiments performed in a high-vacuum chamber.

Details

Title
Formation Pathways of Lath-Shaped WO3 Nanosheets and Elemental W Nanoparticles from Heating of WO3 Nanocrystals Studied via In Situ TEM
Author
Chen, Xiaodan 1   VIAFID ORCID Logo  ; van Huis, Marijn A 1   VIAFID ORCID Logo 

 Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands; Electron Microscopy Center, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands 
First page
1291
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2774934609
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.