Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Hydrogel patches are some of the most effective dressings for wound healing. In this study, the Gantrez® S-97 (Gan)/xyloglucan (XG) hydrogel patches were formulated by using a full central composite design (CCD). The optimized hydrogel patches consisted of 17.78% w/w of Gan and 0.1% w/w of XG. Honey and D. bulbifera extract were loaded in the Gan/XG hydrogel patches. The physical properties of the hydrogel patches, including water content, water absorption, rate of water vapor transmission, and mechanical properties, were examined. The D. bulbifera extract/honey-loaded patch exhibited a higher value of water absorption, tensile strength, and elongation than the honey-loaded patch and the unloaded patch, respectively. The biological activities of the patches were also investigated. All hydrogel patches protected wounds from external bacterial infection. The D. bulbifera extract/honey-loaded patch exhibited stronger antioxidant activity than the honey-loaded patch and the unloaded patch. Besides, all the hydrogel patches with concentrations of 0.5–2.5 mg/mL showed that they were nontoxic to fibroblast cells. The combination of D. bulbifera extract and honey in the patch affected fibroblast proliferation. In addition, all Gan/XG hydrogel patches significantly induced recovery of the scratch area. Therefore, the Gan/XG hydrogel patches could be candidates as wound dressings.

Details

Title
Formulation and Optimal Design of Dioscorea bulbifera and Honey-Loaded Gantrez®/Xyloglucan Hydrogel as Wound Healing Patches
Author
Eakwaropas, Pattaranut; Ngawhirunpat, Tanasait; Rojanarata, Theerasak; Patrojanasophon, Prasopchai  VIAFID ORCID Logo  ; Opanasopit, Praneet  VIAFID ORCID Logo  ; Nuntharatanapong, Nopparat
First page
1302
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19994923
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2679800427
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.