It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Most statistical tests rely upon certain assumptions about the variables used in the analysis. When these assumptions are not met the results may not be trustworthy, resulting in a Type I or Type II error, or over- or under-estimation of significance or effect size(s). As Pedhazur (1997, p. 33) notes, "Knowledge and understanding of the situations when violations of assumptions lead to serious biases, and when they are of little consequence, are essential to meaningful data analysis". However, as Osborne, Christensen, and Gunter (2001) observe, few articles report having tested assumptions of the statistical tests they rely on for drawing their conclusions. This creates a situation where we have a rich literature in education and social science, but we are forced to call into question the validity of many of these results, conclusions, and assertions, as we have no idea whether the assumptions of the statistical tests were met. Our goal for this paper is to present a discussion of the assumptions of multiple regression tailored toward the practicing researcher. Several assumptions of multiple regression are “robust” to violation (e.g., normal distribution of errors), and others are fulfilled in the proper design of a study (e.g., independence of observations). Therefore, we will focus on the assumptions of multiple regression that are not robust to violation, and that researchers can deal with if violated. Specifically, we will discuss the assumptions of linearity, reliability of measurement, homoscedasticity, and normality.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer