Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In order to determine the effect of defect size on the pipeline fracture performance of girth welds in oil and gas pipelines, ABAQUS was used to simulate the fracture responses of X80 pipelines with girth weld defects under internal pressure and bending moment conditions based on damage mechanics. In particular, the length and depth of defects were parametrically studied; the defect depth range was 20–80% of the wall thickness, and the circumferential length range of the defects was 5–20% of the pipeline circumference. The results show that, under the combined action of internal pressure and bending moment, the defect depth was more associated with adverse effects than the circumferential length of the defect. The failure load did not linearly decrease as the size of the defect increased, but when the depth of the defect reached a certain value, the failure load suddenly decreased.

Details

Title
Fracture Response of X80 Pipe Girth Welds under Combined Internal Pressure and Bending Moment
Author
Zhu, Li 1   VIAFID ORCID Logo  ; Li, Naixian 1 ; Jia, Bin 1 ; Zhang, Yu 2 

 School of Civil Engineering and Architecture, Southwest University of Science and Technology, Mianyang 621010, China; [email protected] (L.Z.); 
 Sichuan Deyuan Pipeline Technology Co., Ltd., Chengdu 610041, China 
First page
3588
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2812717209
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.