Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Land surface temperature (LST) is a crucial biophysical parameter related closely to the land–atmosphere interface. Satellite thermal infrared measurement provides an effective method to derive LST on regional and global scales, but it is very hard to acquire simultaneously high spatiotemporal resolution LST due to its limitation in the sensor design. Recently, many LST downscaling and spatiotemporal image fusion methods have been widely proposed to solve this problem. However, most methods ignored the spatial heterogeneity of LST distribution, and there are inconsistent image textures and LST values over heterogeneous regions. Thus, this study aims to propose one framework to derive high spatiotemporal resolution LSTs in heterogeneous areas by considering the optimal selection of LST predictors, the downscaling of MODIS LST, and the spatiotemporal fusion of Landsat 8 LST. A total of eight periods of MODIS and Landsat 8 data were used to predict the 100-m resolution LST at prediction time tp in Zhangye and Beijing of China. Further, the predicted LST at tp was quantitatively contrasted with the LSTs predicted by the regression-then-fusion strategy, STARFM-based fusion, and random forest-based regression, and was validated with the actual Landsat 8 LST product at tp. Results indicated that the proposed framework performed better in characterizing LST texture than the referenced three methods, and the root mean square error (RMSE) varied from 0.85 K to 2.29 K, and relative RMSE varied from 0.18 K to 0.69 K, where the correlation coefficients were all greater than 0.84. Furthermore, the distribution error analysis indicated the proposed new framework generated the most area proportion at 0~1 K in some heterogeneous regions, especially in artificial impermeable surfaces and bare lands. This means that this framework can provide a set of LST dataset with reasonable accuracy and a high spatiotemporal resolution over heterogeneous areas.

Details

Title
A Framework for Generating High Spatiotemporal Resolution Land Surface Temperature in Heterogeneous Areas
Author
Zhu, Xinming 1   VIAFID ORCID Logo  ; Song, Xiaoning 1 ; Leng, Pei 2 ; Li, Xiaotao 3 ; Gao, Liang 1 ; Guo, Da 1   VIAFID ORCID Logo  ; Cai, Shuohao 1 

 College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; [email protected] (X.Z.); [email protected] (L.G.); [email protected] (D.G.); [email protected] (S.C.); Yanshan Earth Critical Zone and Surface Fluxes Research Station, University of Chinese Academy of Sciences, Beijing 101408, China 
 Key Laboratory of Agricultural Remote Sensing, Ministry of Agriculture and Rural Affairs, Beijing 100081, China; [email protected]; Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China 
 China Institute of Water Resources and Hydropower Research, Beijing 100038, China; [email protected] 
First page
3885
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2580988016
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.