Full Text

Turn on search term navigation

© 2012 Kreft, Robenek. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The primary function of the urothelium is to provide the tightest and most impermeable barrier in the body, i.e. the blood-urine barrier. Urothelial plaques are formed and inserted into the apical plasma membrane during advanced stages of urothelial cell differentiation. Currently, it is supposed that differentiation with the final formation of urothelial plaques is hindered in cultured urothelial cells. With the aid of the high-resolution imaging technique of freeze-fracture replica immunolabelling, we here provide evidence that urothelial cells in vitro form uroplakin-positive urothelial plaques, localized in fusiform-shaped vesicles and apical plasma membranes. With the establishment of such an in vitro model of urothelial cells with fully developed urothelial plaques and functional properties equivalent to normal bladder urothelium, new perspectives have emerged which challenge prevailing concepts of apical plasma membrane biogenesis and blood-urine barrier development. This may hopefully provide a timely impulse for many ongoing studies and open up new questions for future research.

Details

Title
Freeze-Fracture Replica Immunolabelling Reveals Urothelial Plaques in Cultured Urothelial Cells
Author
Kreft, Mateja Erdani; Robenek, Horst
First page
e38509
Section
Research Article
Publication year
2012
Publication date
Jun 2012
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1325028167
Copyright
© 2012 Kreft, Robenek. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.