Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Continuing progress in machine learning (ML) has led to significant advancements in agricultural tasks. Due to its strong ability to extract high-dimensional features from fruit images, deep learning (DL) is widely used in fruit detection and automatic harvesting. Convolutional neural networks (CNN) in particular have demonstrated the ability to attain accuracy and speed levels comparable to those of humans in some fruit detection and automatic harvesting fields. This paper presents a comprehensive overview and review of fruit detection and recognition based on DL for automatic harvesting from 2018 up to now. We focus on the current challenges affecting fruit detection performance for automatic harvesting: the scarcity of high-quality fruit datasets, fruit detection of small targets, fruit detection in occluded and dense scenarios, fruit detection of multiple scales and multiple species, and lightweight fruit detection models. In response to these challenges, we propose feasible solutions and prospective future development trends. Future research should prioritize addressing these current challenges and improving the accuracy, speed, robustness, and generalization of fruit vision detection systems, while reducing the overall complexity and cost. This paper hopes to provide a reference for follow-up research in the field of fruit detection and recognition based on DL for automatic harvesting.

Details

Title
Fruit Detection and Recognition Based on Deep Learning for Automatic Harvesting: An Overview and Review
Author
Xiao, Feng  VIAFID ORCID Logo  ; Wang, Haibin  VIAFID ORCID Logo  ; Xu, Yueqin; Zhang, Ruiqing
First page
1625
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20734395
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2829696067
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.