Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Enzyme inks can be inkjet printed to fabricate enzymatic biosensors. However, inks containing enzymes present a low shelf life because enzymes in suspension rapidly lose their catalytic activity. Other major problems of printing these inks are the non-specific adsorption of enzymes onto the chamber walls and stability loss during printing as a result of thermal and/or mechanical stress. It is well known that the catalytic activity can be preserved for significantly longer periods of time and to harsher operational conditions when enzymes are immobilized onto adequate surfaces. Therefore, in this work, horseradish peroxidase was covalently immobilized onto silica nanoparticles. Then, the nanoparticles were mixed into an aqueous ink containing single walled carbon nanotubes. Electrodes printed with this specially formulated ink were characterized, and enzyme electrodes were printed. To test the performance of the enzyme electrodes, a complete amperometric hydrogen peroxide biosensor was fabricated by inkjet printing. The electrochemical response of the printed electrodes was evaluated by cyclic voltammetry in solutions containing redox species, such as hexacyanoferrate (III/II) ions or hydroquinone. The response of the enzyme electrodes was studied for the amperometric determination of hydrogen peroxide. Three months after the ink preparation, the printed enzyme electrodes were found to still exhibit similar sensitivity, demonstrating that catalytic activity is preserved in the proposed ink. Thus, enzyme electrodes can be successfully printed employing highly stable formulation using nanoparticles as carriers.

Details

Title
Fully Inkjet-Printed Biosensors Fabricated with a Highly Stable Ink Based on Carbon Nanotubes and Enzyme-Functionalized Nanoparticles
Author
Mass, Mijal 1   VIAFID ORCID Logo  ; Veiga, Lionel S 1 ; Garate, Octavio 1 ; Longinotti, Gloria 1 ; Moya, Ana 2 ; Eloi Ramón 2   VIAFID ORCID Logo  ; Villa, Rosa 3 ; Ybarra, Gabriel 1   VIAFID ORCID Logo  ; Gabriel, Gemma 3 

 INTI-Micro y Nanotecnologías, Instituto Nacional de Tecnología Industrial (INTI), San Martín, Buenos Aires B1650WAB, Argentina; [email protected] (M.M.); [email protected] (L.S.V.); [email protected] (O.G.); [email protected] (G.L.) 
 Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Campus Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain; [email protected] (A.M.); [email protected] (E.R.); [email protected] (R.V.) 
 Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Campus Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain; [email protected] (A.M.); [email protected] (E.R.); [email protected] (R.V.); CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain 
First page
1645
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20794991
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2554790520
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.