Full text

Turn on search term navigation

© 2014 Xu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background

Genetic architecture of coronary artery disease (CAD) is still to be defined. Since low density lipoprotein receptor-related protein 6 (LRP6) gene play critical roles in Wnt signal transduction which are important for vascular development and endodermis specification, we therefore resequenced it to search for mutations in CAD patients.

Methods

We systemically sequenced all the exons and promoter region of LRP6 gene in a sample of 380 early onset CAD patients and 380 control subjects in Chinese.

Results

In total, we identified 5 patient-specific mutations including K82N (two patients), S488Y (one patient), P1066T (two patients), P1206H (two patients) and I1264V (one patient) All these mutations located at the extracellular domain of LRP6 gene. In vitro functional analysis of patient-specific mutations demonstrated that these mutations resulted in a significant reduction in both protein level transporting to cell membrane and downstream Wnt signal activity. Furthermore, we found that LRP6 novel mutations attenuated proliferation and migration of human umbilical vein endothelial cells (HUVECs) when compared with wild type (WT) LRP6.

Conclusion

Our results demonstrated that these loss-of-function variants might contribute to disease liability in a subset of CAD and defects in Wnt signal activation might be important contributing factors for the onset of CAD.

Details

Title
Functional Analysis LRP6 Novel Mutations in Patients with Coronary Artery Disease
Author
Xu, Yujun; Gong, Wei; Peng, Jia; Wang, Haoran; Huang, Jin; Hu, Ding; Dao Wen Wang
First page
e84345
Section
Research Article
Publication year
2014
Publication date
Jan 2014
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1476497508
Copyright
© 2014 Xu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.