Full Text

Turn on search term navigation

Copyright © 2016 Joon Woo Park et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Fundamental properties of magnesium phosphate cement (MPC) were investigated in this paper. The setting time and compressive and bond (i.e., flexural and tensile bond) strengths were measured to assess the applicability, and hydration product was detected by the X-ray diffraction. The specimens were manufactured with magnesia and potassium dihydrogen phosphate (K2HPO4) was added to activate hydration process. The Borax (Na2B4O7·10H2O) was used as a retarder to mitigate overwhelming rapid hardening. Mercury intrusion porosimetry was used to examine the pore structure of MPC mortar, and simultaneously rapid chloride penetration test was performed. As a result, the compressive strength of MPC mortar was mostly achieved within 12 hours; in particular, the MPC mortar at 4.0 of M/P ranked the highest value accounting for 30.0 MPa. When it comes to tensile and flexural bond to old substrate in mortar patching, the MPS had the higher tensile and flexural strengths, accounting for 1.9 and 1.7 MPa, respectively, compared to OPC mortar patching. Unlike Portland cement mortar, the MPC mortar contained mainly air void rather than capillary pores in the pore distribution. Presumably due to reduced capillary pore in the MPC, the MPC indicated lower penetrability in the chloride penetration test.

Details

Title
Fundamental Properties of Magnesium Phosphate Cement Mortar for Rapid Repair of Concrete
Author
Joon Woo Park; Kim, Ki Hwan; Ki, Yong Ann
Publication year
2016
Publication date
2016
Publisher
John Wiley & Sons, Inc.
ISSN
16878434
e-ISSN
16878442
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1827237202
Copyright
Copyright © 2016 Joon Woo Park et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.