Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Increased urbanization has reduced the amount of green space, resulting in a reduced carbon sink potential across urban landscapes. Through the use of biogeochemical modeling, different land use scenarios have been developed and run for the future (2020–2099) to compare and quantify the potential for change in carbon and water dynamics by having more tree cover and reducing impervious surfaces or turf lawns in Lehigh Valley, PA. These results show that the effect of deforestation is larger than the effect of reforestation. Due to young-stand age trees having a lower capacity for carbon storage than mature trees, the loss of the mature trees has a more immediate impact. The conversion of lawns or impervious surfaces to forests has somewhat similar effects, although the higher nutrients of lawns allow the forest to grow better. However, replacing impervious surfaces with trees reduces runoff more. This study shows that within the city of Bethlehem, the most socially vulnerable area benefits the most from increasing the number of trees. When converting 25% of the impervious area to forest, South Bethlehem significantly increased its vegetation carbon, productivity, and carbon storage, reduced its runoff, and generally created a safer and cleaner environment for residents.

Details

Title
Future (2020–2099) Carbon and Water Dynamics of Lehigh Valley Based on Land Use and Land Cover Change
Author
Felzer, Benjamin S  VIAFID ORCID Logo  ; Andrade, Christopher
First page
133
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20763298
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3084731880
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.