Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study aims to predict new technologies by analyzing patent data and identifying key technology trends using a Temporal Network. We have chosen big data-based smart logistics technology as the scope of our analysis. To accomplish this, we first extract relevant patents by identifying technical keywords from prior literature and industry reports related to smart logistics. We then employ a technology prospect analysis to assess the innovation stage. Our findings indicate that smart logistics technology is in a growth stage characterized by continuous expansion. Moreover, we observe a future-oriented upward trend, which quantitatively confirms its classification as a hot technology domain. To predict future advancements, we establish an IPC Temporal Network to identify core and converging technologies. This approach enables us to forecast six innovative logistics technologies that will shape the industry’s future. Notably, our results align with the logistics technology roadmaps published by various countries worldwide, corroborating our findings’ reliability. The methodology presents in this research provides valuable data for developing R&D strategies and technology roadmaps to advance the smart logistics sector.

Details

Title
Future Smart Logistics Technology Based on Patent Analysis Using Temporal Network
Author
Kwon, Koopo 1   VIAFID ORCID Logo  ; So, Jaeryong 2   VIAFID ORCID Logo 

 Department of Shipping and Air Cargo & Drone Logistics, Youngsan University, 142, Bansong-sunhwan-ro, Haeundae-gu, Busan 48015, Republic of Korea 
 Department of Industrial Engineering, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea 
First page
8159
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2819496334
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.