Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Based on experimental observations, there is a correlation between time and consecutive gaze positions in visual behaviors. Previous studies on gaze point estimation usually use images as the input for model trainings without taking into account the sequence relationship between image data. In addition to the spatial features, the temporal features are considered to improve the accuracy in this paper by using videos instead of images as the input data. To be able to capture spatial and temporal features at the same time, the convolutional neural network (CNN) and long short-term memory (LSTM) network are introduced to build a training model. In this way, CNN is used to extract the spatial features, and LSTM correlates temporal features. This paper presents a CNN Concatenating LSTM network (CCLN) that concatenates spatial and temporal features to improve the performance of gaze estimation in the case of time-series videos as the input training data. In addition, the proposed model can be optimized by exploring the numbers of LSTM layers, the influence of batch normalization (BN) and global average pooling layer (GAP) on CCLN. It is generally believed that larger amounts of training data will lead to better models. To provide data for training and prediction, we propose a method for constructing datasets of video for gaze point estimation. The issues are studied, including the effectiveness of different commonly used general models and the impact of transfer learning. Through exhaustive evaluation, it has been proved that the proposed method achieves a better prediction accuracy than the existing CNN-based methods. Finally, 93.1% of the best model and 92.6% of the general model MobileNet are obtained.

Details

Title
Gaze Tracking Based on Concatenating Spatial-Temporal Features
Author
Hwang, Bor-Jiunn 1   VIAFID ORCID Logo  ; Hui-Hui, Chen 1   VIAFID ORCID Logo  ; Hsieh, Chaur-Heh 2 ; Deng-Yu, Huang 1 

 Department of Computer and Communication Engineering, Ming Chuan University, Taoyuan 333, Taiwan; [email protected] (B.-J.H.); [email protected] (D.-Y.H.) 
 College of Artificial Intelligence, Yango University, Fuzhou 350015, China; [email protected] 
First page
545
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2621377061
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.