Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

We propose a novel generative adversarial network for class-conditional data augmentation (i.e., GANDA) to mitigate data imbalance problems in image classification tasks. The proposed GANDA generates minority class data by exploiting majority class information to enhance the classification accuracy of minority classes. For stable GAN training, we introduce a new denoising autoencoder initialization with explicit class conditioning in the latent space, which enables the generation of definite samples. The generated samples are visually realistic and have a high resolution. Experimental results demonstrate that the proposed GANDA can considerably improve classification accuracy, especially when datasets are highly imbalanced on standard benchmark datasets (i.e., MNIST and CelebA). Our generated samples can be easily used to train conventional classifiers to enhance their classification accuracy.

Details

Title
Generative Adversarial Network for Class-Conditional Data Augmentation
First page
8415
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2465891669
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.