Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The rational development of mineral resources provides necessary materials for economic development, but environmental pollution caused by mining activities is an inevitable consequence. Here, we present a case study of Chehe Town in Guangxi, an area with integrated metals mining and smelting. The geochemical distribution, migration, and transformation behaviors of Cd and other heavy metals were studied in detail by systematically collecting surface media such as atmospheric dust, surface water and stream sediments, ores, tailings, mine drainage, soil, and crops in and around the mining area. We used these data to explore the geochemical response of the surface environment to mining and smelting of metal sulfide deposits. The annual flux of Cd and other heavy metals near the mining and smelting sites was high. Due to the topography, heavy metals in the atmosphere are mainly transported via vertical deposition, influencing areas downwind for 25 km. The mine drainage exceeded As and Zn standards but had little impact on the surface water. The surface water quality was good, without acidification. Risks due to ore were much higher than that for tailings. Heavy metals buffered by surrounding carbonate rocks and secondary minerals mainly migrated as solid particles, resulting in the contamination of stream sediment by heavy metals. In mountainous areas, rivers are mainly affected by topography, flowing fast and dominated by downcutting, which caused heavy metal pollution in the sediment have a limited effect on the soil near the river. Heavy metal concentrations in the cultivated soil were greatly influenced by external input such as substantial atmospheric dust. However, only Cd accumulated in the crops, with very high concentrations in rice, but safe and edible levels in corn. Thus, in the mining area, the most sensitive to heavy metals was the atmospheric environment. High concentrations of heavy metals beyond the ore district are mainly concentrated in the sediment, with distant impacts. Therefore, it is necessary to monitor and control risks associated with sediment transport, conduct treatment, and adjust crop planting. The soil, river, and agriculture respond differently to mining activities, but the risk is low and can be managed as needed.

Details

Title
Geochemical Response of Surface Environment to Mining of Sn-Pb-Zn Sulfide Deposits: A Case Study of Dachang Tin Polymetallic Deposit in Guangxi
Author
Li, Bo 1 ; Yu, Tao 2 ; Ji, Wenbing 3 ; Liu, Xu 1 ; Lin, Kun 1 ; Cheng, Li 1 ; Ma, Xudong 1 ; Yang, Zhongfang 4   VIAFID ORCID Logo 

 School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China 
 School of Science, China University of Geosciences, Beijing 100083, China; Key Laboratory of Ecological Geochemistry, Ministry of Natural Resources, National Research Center for Geoanalysis, Beijing 100037, China 
 Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China 
 School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China; Key Laboratory of Ecological Geochemistry, Ministry of Natural Resources, National Research Center for Geoanalysis, Beijing 100037, China 
First page
1550
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20734441
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2806608494
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.