Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study analyzes the geophysical signals in J2 time series from 1976 to 2020 by using singular spectrum analysis (SSA) and the Lomb-Scargle (L-S) periodogram for the first time. The results of SSA indicate that the secular trend is characterized by a superposition of the secular linear decrease with a rate of approximately (−5.80 ± 0.08) × 10−11/yr and an obvious quadratic rate of (2.38 ± 0.02) × 10−13/yr2. Besides, the annual, semi-annual, and 10.6-year signals with determining for the first time its amplitude of 5.01 × 10−11, are also detected by SSA, where their stochastic behavior can be maintained to the greatest extent. The 18.6-year signal cannot be detected by SSA even when the window size of 18.6 years was selected, while L-S periodogram can detect the signal of 18.6 years after removing the 18.6-year tidal theoretical value and the linear trend, proving the existence of the tidal variations of 18.6 years in the residual time series. Nevertheless, the 10.6-year signal can be found only after removing the secular trend. This fact suggests that the advantages of different methods used will lead to different sensitivity to the particular signals hard to be detected. Finally, the reconstructed ΔJ2 time series through the sum of the climate-driven contributions from glacial isostatic adjustment (GIA), Antarctic ice sheets (ANT), atmosphere (ATM), continental glaciers (GLA), Greenland ice sheets (GRE), ocean bottom pressure (OBP), and terrestrial water storage (TWS) by using GRACE gravity field solution and geophysical models agrees very well with that of the observed ΔJ2 from SLR in terms of the amplitude and phase. About 81.5% of observed ΔJ2 can be explained by the reconstructed value. ATM, TWS, and OBP are the most significant contributing sources for seasonal signals in ΔJ2 time series, explaining up to 40.1%, 31.9%, and 26.3% of the variances of observed ΔJ2. These three components contribute to the annual and semi-annual variations of the observed ΔJ2 up to 30.1% and 1.6%, 30.8% and 1.0%, as well as 25.4% and 0.7%, respectively. GRE, ANT, and GLA have ~3 to ~7-year periodic fluctuations and a positive linear trend, excluding GIA.

Details

Title
Geophysical Signal Detection in the Earth’s Oblateness Variation and Its Climate-Driven Source Analysis
Author
Yu, Hongjuan 1 ; Chen, Qiujie 1 ; Sun, Yu 2 ; Sosnica, Krzysztof 3   VIAFID ORCID Logo 

 College of Surveying and Geo-Informatics, Tongji University, Shanghai 200092, China; [email protected] 
 Key Lab of Spatial Data Mining and Information Sharing of Ministry of Education, Fuzhou University, Fuzhou 350108, China; [email protected] 
 Institute of Geodesy and Geoinformatics, Wroclaw University of Environmental and Life Sciences, Grunwaldzka 53, 50-357 Wrocław, Poland; [email protected] 
First page
2004
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2533198772
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.