Abstract

Artiklis pakutakse välja kasutada komplekssete maatriksite omaväärtuste intervallide leidmiseks Gershgorini ringiteoreemi. Tegemist on mitteiteratiivse meetodiga, mis vöimaldab leida omaväärtuste reaal- ja imaginaarosade alam- ja ülemrajasid. Peale selle käsitletakse omaväärtuste inervallide klastrite vaheliste kauguste määramist. Saadud tulemusi vörreldakse eelnevatega, mis on saadud komplekssete maatriksite omaväärtuste intervallide leidmisel. Väljatöötatud meetodid omavad rakendusi dünaamiliste süsteemide stabiilsuse uurimisel.

Alternate abstract:

In this article, the Gershgorin disk theorem in complex interval matrices is proposed for enclosing interval eigenvalues. This is a non-iterative method for finding eigenvalue bounds for both real and imaginary parts. Moreover, we are able to find gaps between the clusters of interval eigenvalues and have compared the results with the previous theorems for interval eigenvalue bounds for complex interval matrices. These results can be decisive for checking Hurwitz and Schur stability of complex interval matrices that appear in uncertain dynamical systems. Further bounds obtained from the present formulae can be considered as the initial bounds for iterative methods.

Details

Title
Gershgorin disk theorem in complex interval matrices
Author
Maiti, Suman; Chakraverty, Snehashish
Pages
65-76
Section
INTERVAL COMPUTATIONS
Publication year
2022
Publication date
2022
Publisher
Teaduste Akadeemia Kirjastus (Estonian Academy Publishers)
ISSN
17366046
e-ISSN
17367530
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2645223892
Copyright
© 2022. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.