Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Microbial induced calcite precipitation (MICP) offers a host of interesting features, from both theoretical and practical standpoints. This process was firstly investigated as a geo-biological mechanism involved in carbonate mineral formation in both rocks and soil. The interest in its practical use has significantly increased in recent years, as MICP has been used in different fields, such as oil recovery, the improvement of soil geotechnical characteristics, and concrete healing. To the best of our knowledge, this work is the first attempt to carry out a bibliometric descriptive study of publications concerning MICP. We analyzed data from the Web of Science Core Collection (WoSCC), which provides comprehensive information for bibliometric analysis, including the Science Citation Index Expanded (SCI-E) and the Social Sciences Citation Index (SSCI). The bibliometric analysis was carried out on 1580 publications, from 2000 to August 2022, and included publication output; author; institution; country; collaborations between authors, institutes, and countries; and citation frequency. We created visualization maps, including research collaborations, using the VOSviewer program. MICP, carbonate precipitation, cementation, and soil improvement in terms of geotechnical properties are frequently used keywords. Although in the year 2000, only two papers were published on MICP, the number of publications has increased rapidly since 2014. In 2021, 333 papers were published. China leads the pack as the most productive country, followed by the USA and Australia. According to our results, the number of research papers has dramatically increased in the last 5 years. MICP use for concrete healing/cementation and soil geotechnical improvement, as well as the low environmental impact of such a technique, are becoming very popular topics among researchers. With the aging of concrete buildings, as well as with the worsening of environmental pollution and soil alterations, the research regarding MICP will play an ever increasing and crucial role in civil engineering and geotechnical fields, as well as in soil science. MICP also address Sustainable Development Goal 11, “building sustainable cities and communities.” Nevertheless, our study pointed out a concentration of the MICP studies in just a few countries. Russia and Brazil, for instance, seem to poorly contribute to MICP research. Greater cooperation among countries, along with the extension of the research network on this topic, would foster more rapid progress in MICP studies, from both practical and speculative standpoints.

Details

Title
Global Scientific Research and Trends Regarding Microbial Induced Calcite Precipitation: A Bibliometric Network Analysis
Author
Mazhar Ali Jarwar 1 ; Dumontet, Stefano 1 ; Rosa Anna Nastro 1 ; Sanz-Montero, M Esther 2 ; Pasquale, Vincenzo 1 

 Laboratory of Environmental Microbiology, Department of Science and Technology, Parthenope University of Naples, Centro Direzionale, Isola C4, 80143 Naples, Italy 
 Department of Mineralogy and Petrology, University Complutense Madrid, 28040 Madrid, Spain 
First page
16114
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2748570863
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.