Abstract

In this paper, we propose a highly sensitive and biocompatible glucose sensor using a semiconductor-based field effect transistor (FET) with a functionalized hydrogel. The principle of the FET device contributes to the easy detection of ionic charges with high sensitivity, and the hydrogel coated on the electrode enables the specific detection of glucose with biocompatibility. The copolymerized hydrogel on the Au gate electrode of the FET device is optimized by controlling the mixture ratio of biocompatible 2-hydroxyethylmethacrylate (HEMA) as the main monomer and vinylphenylboronic acid (VPBA) as a glucose-responsive monomer. The gate surface potential of the hydrogel FETs shifts in the negative direction with increasing glucose concentration from 10 μM to 40 mM, which results from the increase in the negative charges on the basis of the diol-binding of PBA derivatives with glucose molecules in the hydrogel. Moreover, the hydrogel coated on the gate suppresses the signal noise caused by the nonspecific adsorption of proteins such as albumin. The hydrogel FET can serve as a highly sensitive and biocompatible glucose sensor in in vivo or ex vivo applications such as eye contact lenses and sheets adhering to the skin.

Details

Title
Glucose-responsive hydrogel electrode for biocompatible glucose transistor
Author
Taira Kajisa 1 ; Sakata, Toshiya 2 

 PROVIGATE Inc., Department of Research and Development, Tokyo, Japan 
 Department of Materials Science and Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan 
End page
33
Publication year
2017
Publication date
Dec 2017
Publisher
Taylor & Francis Ltd.
ISSN
14686996
e-ISSN
18785514
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2196546430
Copyright
© 2017 The Author(s). Published by National Institute for Materials Science in partnership with Taylor & Francis. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.