Abstract
The article deals with the Goertzel algorithm, used to establish the modulus and phase of harmonic components of a signal. The advantages of the Goertzel approach over the DFT and the FFT in cases of a few harmonics of interest are highlighted, with the article providing deeper and more accurate analysis than can be found in the literature, including the memory complexity. But the main emphasis is placed on the generalization of the Goertzel algorithm, which allows us to use it also for frequencies which are not integer multiples of the fundamental frequency. Such an algorithm is derived at the cost of negligibly increasing the computational and memory complexity.[PUBLICATION ABSTRACT]
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer





