Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Deep learning has significantly improved the recognition efficiency and accuracy of ground-penetrating radar (GPR) images. A significant number of weight parameters need to be specified, which requires lots of labeled GPR images. However, obtaining the ground-truth subsurface distress labels is challenging as they are invisible. Data augmentation is a predominant method to expand the dataset. The traditional data augmentation methods, such as rotating, scaling, cropping, and flipping, would change the GPR signals’ real features and cause the model’s poor generalization ability. We proposed three GPR data augmentation methods (gain compensation, station spacing, and radar signal mapping) to overcome these challenges by incorporating domain knowledge. Then, the most state-of-the-art model YOLOv7 was applied to verify the effectiveness of these data augmentation methods. The results showed that the proposed data augmentation methods decrease loss function values when the training epochs grow. The performance of the deep learning model gradually became stable when the original datasets were augmented two times, four times, and eight times, proving that the augmented datasets can increase the robustness of the training model. The proposed data augmentation methods can be used to expand the datasets when the labeled training GPR images are insufficient.

Details

Title
GPR Data Augmentation Methods by Incorporating Domain Knowledge
Author
Yue, Guanghua 1 ; Liu, Chenglong 2   VIAFID ORCID Logo  ; Li, Yishun 2 ; Du, Yuchuan 2 ; Guo, Shili 3   VIAFID ORCID Logo 

 Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China; Henan Wanli Transportation Technology Group Co., Ltd., Xuchang 461000, China 
 Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China 
 College of Resource and Environment, Henan Institute of Engineering, Zhengzhou 451191, China 
First page
10896
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2771650826
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.